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Introduction

Contact-friction problems are inherently nonlinear
and path dependent. Nonlinearity occurs partly because
both the contact area and the contact-load intensities are
not known beforehand and vary during the loading his-
tory. Path dependency is a result of the nonconserva-
tive (irreversible dissipative) character of the frictional
forces.

A review of static contact problems presented in ref-
erence 1, which includes a bibliography of approxi-
mately 700 papers, points out that contact problems are
important to thermomechanical stress analyses, fracture
mechanics, mechanical problems involving elastic foun-
dations, the mechanics of joints, geomechanics, and tires.

Contact problems occupy a position of special
importance in aircraft tire mechanics because the contact
zone is where the forces are generated that support,
guide, and maneuver the airplane. Distributions of con-
tact loads and frictional forces define the moments and
shears that are applied to the landing gear system (ref. 2).
Under rolling conditions, the distribution of sliding
velocities within the tire footprint combined with the
frictional forces developed by the tire defines the rate of
energy dissipation associated with the loading conditions
and provides a measure of tire wear (refs. 3 and 4). In the
case of the Space Shuttle orbiter, this wear mechanism is

strong enough to cause tire failures during individual
landing operations (refs. 5 and 6). Therefore, an under-
standing of these tire friction forces and the resulting slip
velocities is critical to the design of aircraft tires for the
next generation of high-performance aircraft, such as the
National Aero-Space Plane and the High-Speed Civil
Transport.

Modeling contact phenomena in the tire footprint is a
formidable task partly because of difficulty of modeling
tire response. Distribution of tractions and the footprint
geometry are both functions of normal, frictional, and
inflation tire loads. Moreover, the complex mechanisms
of dynamic friction, which allow the tire to develop the
necessary steering and braking forces for aircraft control
during ground operations, are not fully understood
(ref. 7). The tire analyst thus is forced to choose among
several friction theories. When the tire contact problem
includes frictional effects, the solution becomes path
dependent and a unique solution is not guaranteed.

The aircraft tire is a composite structure of rubber
and textile constituents that exhibit anisotropic and non-
homogeneous material properties. Normal tire operating
conditions create loads that can produce large deforma-
tions. Elevated operating temperatures from the com-
bined effects of material hysteresis and frictional heating
can cause variations in the material characteristics of the

Abstract

A computational procedure is presented for the solution of frictional contact
problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-
dimensional laminated anisotropic shell theory which includes the effects of varia-
tions in material and geometric parameters, transverse-shear deformation, and geo-
metric nonlinearities. Contact conditions are incorporated into the formulation by
using a perturbed Lagrangian approach with the fundamental unknowns consisting of
the stress resultants, the generalized displacements, and the Lagrange multipliers
associated with both contact and friction conditions. The contact-friction algorithm is
based on a modified Coulomb friction law. A modified two-field, mixed-variational
principle is used to obtain elemental arrays. This modification consists of augmenting
the functional of that principle by two terms: the Lagrange multiplier vector associ-
ated with normal and tangential node contact-load intensities and a regularization
term that is quadratic in the Lagrange multiplier vector. These capabilities and com-
putational features are incorporated into an in-house computer code. Experimental
measurements were taken to define the response of the Space Shuttle nose-gear tire to
inflation-pressure loads and to inflation-pressure loads combined with normal static
loads against a rigid flat plate. These experimental results describe the meridional
growth of the tire cross section caused by inflation loading, the static load-deflection
characteristics of the tire, the geometry of the tire footprint under static loading con-
ditions, and the normal and tangential load-intensity distributions in the tire footprint
for the various static vertical loading conditions. Numerical results were obtained for
the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined
inflation pressure and contact loads against a rigid flat plate. The experimental mea-
surements and the numerical results are compared.
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tire constituents (refs. 8–10). The laminated carcass of
the aircraft tire is thick enough to allow significant
transverse-shear deformations.

These facts and attendant difficulties emphasize the
need to develop modeling strategies and analysis meth-
ods that include efficient, powerful and economic contact
algorithms. Intense research has recently focused on non-
linear analyses of static and dynamic problems involving
contact. Novel techniques that have emerged from these
efforts include semianalytic finite-element models for
nonlinear analysis of shells of revolution (refs. 11
and 12), reduced methods (refs. 13 and 14), and operator
splitting techniques (refs. 15–17). References 14, 17,
and 18 summarize applications of these new tire model-
ing techniques.

Objectives and Scope

NASA Langley Research Center tire modeling
research concentrates on developing an accurate and effi-
cient strategy for predicting aircraft tire responses to a
variety of loading conditions. This research focuses on
developing tire contact modeling techniques, and the
specific objectives of this research are (1) to develop a
contact algorithm with friction effects included to predict
tire response to combined inflation-pressure and static
vertical-loading conditions, (2) to demonstrate the capa-
bilities of this algorithm through numerical studies, and
(3) to validate these numerical results with experimental
data. Distribution of normal and frictional forces in the
tire contact zone (or footprint area) is of particular
interest.

The contact algorithm is incorporated into a mixed-
formulation, two-field, two-dimensional finite-element
model based on the moderate-rotation Sanders-
Budiansky shell theory, including the effects of
transverse-shear deformations, laminated anisotropic
material response, and nonhomogeneous shell character-
istics (refs. 19 and 20). A perturbed Lagrangian formula-
tion (refs. 21 and 22) is the basis for this contact
algorithm. The Lagrangian formulation uses the precon-
ditioned conjugate gradient (PCG) iteration procedure
(refs. 23–25) to determine contact area, distribution of
normal force intensities, and allocation of friction force
intensities. A modified version of the Coulomb friction
law is incorporated into the contact algorithm in which
the friction coefficient at the onset of sliding differs from
that during sliding. This algorithm also monitors the
energy dissipated within the sliding portion of the contact
zone. In this investigation it will be assumed that the tire
is loaded on a surface that is much stiffer than the tire,
thus the surface will be treated as rigid. Hence, the static
tire contact problem will be treated as a unilateral contact

problem. Reference 26 summarizes the characteristics of
this algorithm.

Numerical studies presented for an inflated Space
Shuttle nose-gear tire under static load on a flat surface
demonstrate the capabilities of the analysis techniques.
These analyses incorporate both friction and frictionless
contact. Detailed studies are made of the effects of tire
tread pattern on the contact-force intensities, the influ-
ence of friction coefficient variations on the distribution
of tire contact-force intensities, the convergence charac-
teristics of the contact algorithm, and the history of
energy dissipation in the static footprint.

Experimental measurements were carried out on the
Space Shuttle orbiter nose-gear tire to define its response
to combined inflation-pressure and static vertical-loading
conditions. Experimental procedures used to define the
tire structural response to loading conditions and to mea-
sure the footprint-force intensities, and empirical proce-
dures used to define the geometry and construction
details of the tire for modeling purposes are discussed.
Finally, the analytical results are compared with the
experimental measurements.

Reference 27 describes numerical studies, experi-
mental measurements, and comparisons between analyti-
cal results and experimental measurements. This report
describes development of this contact algorithm.

Nomenclature

nodal contact area with variable
weighting function (see eq. (20))

nodal contact area (see eq. (19))

area of finite-element quadrant
(see eq. (18) and fig. 4)

shell compliance coefficients
(see eq. (4))

number of nodal points in contact
within element

portions of shell boundary where
tractions and displacements are
prescribed

tire stiffness coefficients

transverse-shear stiffness coeffi-
cients of tire (see eq. (A10))

Act

Anode

Aquad

a11 a22 a12, , ,

ass aθθ asθ, , ,

b11 b22 b12, , ,

g11 g22 g12, ,

c

cσ cu,

cij dij f i j, ,
i j, 1 2 6, ,=( )

c44 c45 c55, ,
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tangential unit vectors in meridional
and circumferential directions

flexibility matrix for an individual
element

vector defined in equation (11)

vector of nonlinear terms
(see eq. (7))

vector of nonlinear terms
(see eqs. (8) and (9))

vector of nonlinear contributions to
the global equations (see eqs. (11))

current gaps

initial gaps

vector of initial gaps for contact
element

vector of stress-resultant parameters

total thickness of tire

nondimensional thickness of tire
(see fig. 4)

global linear stiffness matrix
(see eq. (11))

bending and twisting stress resultants
(see fig. 1)

vector of nonlinear terms
(see eq. (7))

number of displacement nodes in
element

shape functions used for approximat-
ing generalized displacements and
Lagrange multipliers

extensional stress resultants

total number of degrees of freedom

peripheral node degrees of freedom
(see eq. (20))

unit normal to reference surface

nodal (contact) force

load parameter

normalized external load parameter

global vector of normalized external
loads and initial gaps

intensity of inflation pressure

intensity of external loading in coor-
dinate directions (see fig. 1)

elemental matrices associated with
contact condition and regularization
term in functional

transverse-shear stress resultants
(see fig. 1)

principal radii of curvature in meridi-
onal and circumferential directions

normal distance from tire axis to ref-
erence surface

strain-displacement matrix for an
individual element

meridional coordinate of tire
(see fig. 1)

transformation matrix

intensity of contact force acting nor-
mal to contact surface

resultant contact friction force
(see eq. (2a))

intensity of contact friction forces
tangent to contact surface

strain energy density (strain energy
per unit area)

energy dissipated during slip at each
iteration (see eqs. (27))

energy dissipated during slip
over all iterations in a load step
(see eqs. (28))

displacement components of refer-
ence surface of tire in meridional,
circumferential, and normal
directions (see fig. 1)

tangential slip for each iteration (see
eqs. (25))

total tangential slip for each load step
(see eqs. (26))

external work

vector of nodal displacements in
shell coordinate system

vector of nodal displacements in
Cartesian coordinate system

Cartesian coordinate system

coordinate normal to tire reference
surface (see fig. 1)

global response vector

slip distances in tire footprint

penalty parameters in tangential and
normal directions (see eq. (6))

relaxation parameter (see eqs. (16))

extensional strains of reference sur-
face of tire

es eθ,

F[ ]

f̃ Z p,( ){ }
G X( ){ }

G X( ){ }

G̃ X( ){ }

gu gv gw, ,
gu0

gv0
gw0

, ,
g0{ }

H{ }
h

h

K̃[ ]

Ms Mθ Msθ, ,

M H X,( ){ }

m

N

Ns Nθ Nsθ, ,
n

nct

ns nθ,
Pn Pu Pv, ,
p

p{ }
P̃{ }

p0

ps pθ p, ,

Q[ ] R[ ],

Qs Qθ,

R1 R2,

r

S[ ]

s

T[ ]
Tn

Tr

Tu Tv,

U

Uslipu
Uslipv

,

Uslipu
Uslipv

,

u v w, ,

uslip vslip,

uslip vslip,

W

X{ }

X{ }

x y z, ,
x3

Z{ }
∆gu ∆gv,
εt εn,

εrelax

εs εθ 2εsθ, ,
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transverse shear strains of tire

circumferential (hoop) coordinate of
tire (see fig. 1)

bending strains of tire

Lagrange multiplier, representing
intensity of contact load normal to
contact surface

Lagrange multipliers, representing
intensity of contact friction loads
tangent to contact surface

Lagrange multipliers, representing
sliding friction load intensities

vector of nodal values of Lagrange
multipliers

static coefficient of friction

dynamic coefficient of friction
dimensionless coordinates along
meridian (see fig. 4)

functionals

rotation about normal to tire refer-
ence surface (see eq. (A9))

rotational components of reference
surface of tire (see fig. 1)

element domain

contact surface

angle defined by ratio of two friction
forces (see eq. (2d))

first variation

Superscripts:

individual elements

indices of shape functions for
approximating Lagrange multipliers

index of shape function for approxi-
mating generalized displacements

number of iteration cycles

matrix transposition

Mathematical Formulation

The analytical formulation for contact of aircraft
tires is based on a form of moderate-rotation Sanders-
Budiansky shell theory and includes the effects of large
displacements and transverse-shear deformation. A
mixed formulation is used in which the fundamental

unknowns consist of five generalized displacements and
eight stress resultants. Figure 1(a) gives sign convention
for the generalized displacements and stress resultants
and figure 1(b) shows a free body diagram of applied
loads, torques, and contact forces. Fundamental equa-
tions of the shell theory used herein are given in refer-
ences 19 and 20 and are summarized in appendix A.

Normal Contact Force Formulation

Figure 2 shows the geometry of contact of a shell
pressed against a flat surface. Figure 2(a) shows sche-
matically normal gaps between the tire carcass and the
flat surface. In the figure,  refers to the contact
region;  is the initial normal gap between the tire
shell and the plate;  is the current normal gap; and
is the normal traction on . Both  and  are
defined to be in the direction of the normal to  and are
measured relative to the inflated profile of the tire. Tire
constraints normal to the contact surface can be
expressed in terms of the following inequalities and
equation that must be satisfied at each point on the con-
tact surface :

(1a)

(1b)

(1c)

The first inequality (eq. (1a)) represents the kine-
matic condition of no penetration of the contact surface
(  for the points in contact). The second inequal-
ity (eq. (1b)) is the static condition of compressive (or
zero) normal tractions. The third equation (eq. (1c))
states that there is zero work done by the normal contact
stresses (i. e., the normal contact stresses exist only at the
points where the tire is in contact with the rigid plate).
The following inequalities are henceforth referred to as
the inactive contact conditions:

(1d)

(1e)

Equations (1) must be satisfied for both frictionless and
frictional contact.

Tangential Contact Force Formulation

Equations (1) define the normal tire contact con-
straint conditions and are augmented to include friction
constraints associated with the Coulomb friction law
when friction forces are considered. The Coulomb fric-
tion law is modified to include a static friction coefficient
associated with the nonskidding or “stick” friction con-
straint, and a dynamic friction coefficient associated with

2εs3 2εθ3,
θ

κs κθ 2κsθ, ,
λw

λu λv,

λu slip, λv slip,,

λ{ }

µstatic

µdynamic

ξ η,

Π Π ΠHR, ,
φ

φs φθ,

Ω e( )

Ωc

ψ

∂s ∂ ∂s⁄≡
∂θ ∂ ∂θ⁄≡
δ

e( )
i j,

i ′

i ′ 1 m,=( )
r

t

Ωc
gw0

gw Tn
Ωc gw0

gw
Ωc

Ωc

gw 0≥

Tn 0≤

Tngw 0=

gw 0=

gw 0>

Tn 0>
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the slip condition when the static friction constraint is
violated.

The “stick” condition defining the static friction con-
straint is

(2a)

(2b)

(2c)

represent the slip condition when equation (2a) is vio-
lated, whereTu andTv are the tangential tractions on the
friction surface representing the friction forces. The
angleψ defines the ratio between the two friction force
components for the slip condition and is expressed as:

(2d)

whereTu andTv in equation (2d) are the computed tan-
gential traction components that exist whenever the static
friction constraint in equation (2a) is first violated. The
following inequalities also hold on the friction surface:

(2e)

(2f)

(2g)

Inequality (2e) simply states that the dynamic
friction coefficient cannot be greater than the static
friction coefficient. Inequalities (2f) and (2g) state that
the energy dissipated by sliding is never positive since
the friction forces always oppose slipping in the tire
footprint.

Figure 2(b) shows schematically the relationship
among the various tangential gap definitions. Initial gaps

 and  represent the tangential displacement of the
inflated tire from the uninflated configuration. Current
gaps  and  represent the displacement of the current
contact solution from the inflated configuration. Delta
gaps  and  represent the tangential slip distances
from the previous tire contact “stick” location in the tire
footprint. For nodes not currently in contact with the flat
plate, the initial gaps and current gaps represent the
orthogonal projections of the gap expressions on the con-
tact surface. Delta gaps are defined only after contact has
been established.

Governing Finite-Element Equations

Discrete equations governing the response of the tire are obtained by applying a modified form of the two-field,
Hellinger-Reissner mixed-variational principle. This principle can be expressed in the following form:

(3)

where

(4)

Tu
2

Tv
2

+( ) Tn⁄ µstatic≤

Tu ψ( )cos Tnµdynamic=

Tv ψ( )sin Tnµdynamic=

ψ abs arctan
Tv

Tu
------

 
 
 

=

µdynamic µstatic≤

Tu∆gu 0≤

Tv∆gv 0≤

gu0
gv0

gu gv

∆gu ∆gv

δΠHR Ns Nθ Nsθ Ms Mθ Msθ Qs Qθ u v w φs φθ, , , , , , , , , , , ,( ) δΠ δW–=

Π Ns ∂su
w
R1
------

1
2
--- u

R1
------ ∂sw– 

 2 1
2
---φ2

+ + + Nθ
∂sr

r
-------u

1
r
---∂θv

w
R2
------

1
2
--- v

R2
------

1
r
---∂θw– 

 2 1
2
---φ2

++ + ++




Ω
∫=

Nsθ
1
r
---∂θu ∂s

∂sr

r
-------– 

 v
u
R1
------ ∂sw– 

  v
R2
------

1
r
---∂θw– 

 + + Ms∂sφs Mθ
∂sr

r
-------φs

1
r
---∂θφθ+ 

 + + +

Msθ
1
r
---∂θφs ∂s

∂sr

r
-------– 

 φθ
1
R1
------ 1

R2
------– 

 φ+ + Qs
u
R1
------– ∂sw φs+ + 

  Qθ
v

R2
------–

1
r
---∂θw φθ+ + 

 + + +

1
2
--- a11Ns

2
a22Nθ

2
g11Ms

2
g22Mθ

2
assQs

2
aθθQθ

2
+ + + + +( ) a12NsNθ b11NsMs b12NsMθ+ ++–

b12NθMs b22NθMθ g12MsMθ asθQsQθ+ + +




dΩ+



6

and

(5)

In equations (4) and (5),a, b, andg are shell compliance coefficients which are the inverse of the shell stiffness
coefficients given in appendix A;φ is the rotation about the normal to the shell and is also given in appendix A;ps, pθ,
andp are the intensities of the external distributed loads in the meridional, circumferential, and radial directions, respec-
tively; Ω is the shell domain; andcσ andcu are the portions of the boundary over which tractions and displacements
are prescribed. Quantities with a tilde (~) denote prescribed boundary stress resultants and generalized displacements;
the underlined terms in equations (4) and (5) represent nonlinear contributions; andns andnθ are unit normals to the
boundary.

Modification to the variational principle consists of augmenting the functional of that principle by two terms: the
Lagrange multiplier associated with the nodal contact pressures and a regularization term which is quadratic in the
Lagrange multipliers. References 21, 22, and 28 give a detailed discussion of the perturbed and the augmented
Lagrangian formulations.

The modified functional has the following form:

(6)

whereΠHR is the functional of the Hellinger-Reissner variational principle;  is the Lagrange multiplier; andε is the
penalty parameter associated with the regularization term. Note that the addition of the regularization term amounts to
approximating the rigid plate by continuously distributed springs with stiffness ofε, for sufficiently largeε. As 1/ε
approaches zero, the continuous springs become the rigid plate.

Shape functions used in approximating the generalized displacements and the Lagrange multipliers are selected to
be the same and differ from those used in approximating the stress resultants. Moreover, because of the nature of the
functionalΠ in equation (6), the continuity of neither the stress resultants nor the Lagrange multiplier is imposed at the
interelement boundaries.

Finite-element equations for each individual element can be cast in the following compact form:

(7)

W psu pθv pw+ +( ) Ωd
Ω
∫ Ñsu Ñsθv M̃sφs M̃sθφθ Q̃s Ñs

u
R1
------ ∂sw– 

  Ñsθ
v

R2
------

1
r
---∂θw– 

 + + w



ns+ + + +









cσ

∫+=

Ñsθu Ñθv M̃sθφs M̃θφθ Q̃θ Ñsθ
u
R1
------ ∂sw– 

  Ñθ
v

R2
------

1
r
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where , , and  are the vectors of the stress-resultant parameters, nodal values of the generalized displace-
ments, and nodal values of the Lagrange multipliers, respectively,  is the matrix of linear flexibility coefficients,

is the strain-displacement matrix,  and  are the matrices associated with the contact condition and the regu-
larization term in the functional, respectively,  and  are vectors of nonlinear terms, and  is the
vector of initial gaps in the contact regionΩc. A dot refers to a zero submatrix or subvector, superscript (e) refers to indi-
vidual elements,  is the normalized external load vector, andp is a load parameter. As the load is incremented, only
the value of the load parameterp changes and the normalized load vector  is constant. Appendix B gives the formu-
las for the elemental arrays , , , , , , , and .

Note that the sizes of the coefficient matrices , , and  vary with the number of active contact condi-
tions. The difficulty associated with an equation system whose size varies during the solution process is alleviated by
allowing the Lagrange multipliers to be discontinuous at interelement boundaries and then eliminating them on the ele-
ment level. If the stress-resultant parameters and Lagrange multiplier parameters are eliminated from equation (7) then
the following equations in terms of nodal displacements  are obtained:

(8)

where

(9)

and the vector  in  is replaced by its expression in terms of . Equation (8) is the tangent operator for
the Newton-Raphson iterative solution procedure used in this investigation and is derived in detail in appendix C.

To simplify the treatment of the contact conditions, the displacement components are transformed from shell coordi-
nates  to the global Cartesian coordinates  before assembly. The relations between the displacement
vector in the shell coordinates  and the corresponding vector in Cartesian coordinates  can be written in
the following compact form:

(10)

where  is the transformation matrix. The different arrays in the finite-element equations are transformed accordingly.
Appendix D gives the explicit form of the transformation relations.

Solution of Nonlinear Algebraic Equations

Discrete equations governing the response of the tire
are obtained by assembling the elemental contributions
in equation (6) or (7) and can be written in the following
form:

(11)

where  is the global linear stiffness matrix of the tire;
 is the vector of nonlinear contributions;  is

the global vector of normalized external loads and initial
gaps; and  is the global response vector of the tire
obtained by assembling the contributions from the sub-
vectors , , and .

The nonlinear algebraic equation (eq. (8)) is solved
and the contact region and the contact-load intensities are
determined by using an incremental-iterative technique
(i.e., a predictor-corrector computation method) in which
the response vector , corresponding to a particular
value of the load parameterp, is used to calculate a suit-
able approximation (predictor) for  at a different

value ofp. This approximation is then chosen as an ini-
tial estimate for  in a corrective iterative scheme
such as the Newton-Raphson technique. In each Newton-
Raphson iteration the contact conditions are checked and
updated.

Computational Procedures to Determine
Contact-Load Intensities, Contact Areas,
and Energy Dissipated During Slip

This section describes the contact algorithm used to
assess the state of contact in the tire footprint and to
implement the modified Coulomb friction law. Descrip-
tions of the algorithms used to approximate the area of
contact and the energy dissipated during slip are also
included. Finally, the computational procedures used to
determine the displacement, stress-resultant, and contact-
load intensity solutions at each iteration and load step are
outlined.

Nonlinearities due to large displacements (moderate
rotations) and the contact condition are combined into a
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single iteration loop. Reference 23 advocates a two-level
(nested) iteration scheme. For this two-level scheme, the
inner iteration loop accounts for the contact conditions
associated with the contact-load intensities, and the outer
iteration loop uses the Newton-Raphson iteration
scheme. Numerical experiments demonstrate that for
frictionless contact problems the two-level iterative
scheme requires more iterations than the single-level
scheme utilized in the present study. (See ref. 29.)

Contact Algorithm With Friction

Figure 3 schematically shows the contact algorithm
developed for this investigation. Three possible contact
states are possible for each contact node in this algo-
rithm: (1) open or no contact, denoted by the contact flag
set to 0; (2) stick contact where the contact node adheres
to the contact surface, denoted by the contact flag set
to 1; and (3) slip contact where the contact node slides on
the contact surface, denoted by the contact flag set to 2.
The algorithm is built on a two-level logical if-statement
scheme. The first level interrogates the status of the pre-
vious contact flags for each contact node. The second
level interrogates the status of the current normal gap
of nodes not previously in contact to determine whether
or not contact has been established for that particular
node; for nodes which were previously in contact, the
second level interrogates both the sign of the normal
Lagrange multiplier , which represents the normal
contact load intensity, and the Coloumb friction law con-
straints to determine the current nodal contact status.

For nodes not previously in contact, stick contact is
assumed whenever the normal gap  is positive or 0,
i.e., inequality equation (1a) is satisfied, and no contact
is assumed whenever  is negative. For nodes previ-
ously in contact, stick contact is assumed if both the
static condition of compressive (or 0) normal tractions
(eq. (1b)) and the static friction constraint (eq. (2a)) are
satisfied; slip contact is assumed if the compressive nor-
mal tractions condition is satisfied but the friction con-
straint is not satisfied at a node. If the compressive
normal tractions condition is not satisfied at a node, then
that node is removed from the list of active contact
nodes.

When an open nodal contact condition is encoun-
tered the contact flag is set to 0; if the previous contact
condition was either stick or slip then the three load
intensities  for that node are set to 0. When
a stick nodal contact condition is encountered the contact
flag is set to 1, the number of boundary condition nodes
is incremented, and incremental tangential nodal dis-
placements∆u and ∆v are set to 0. When a slip nodal
contact condition is encountered the contact flag is set

to 2. The dynamic friction-force load intensities are com-
puted from the following equations:

(12a)

(12b)

Incremental friction-force load intensities required to
bring the friction-force load intensities back into compli-
ance with the Coulomb friction law constraint are com-
puted from

(13a)

(13b)

The delta gaps associated with the sliding friction condi-
tion are computed as follows

(14a)

(14b)

where equations (14) are derived from equation (C44) in
appendix C and the delta gaps replace the displacement
solution. The vectors {rlbar} and {dlbar} are defined in
appendix C. The incremental friction-force load intensi-
ties (eqs. (13)) are used to update the contact solution

(15a)

(15b)

and the delta gaps (eqs. (14)) are used to update the dis-
placement solution

(16a)

(16b)

whereεrelax is a relaxation parameter with a magnitude
0 < εrelax< 1. The function ofεrelax is to enhance the
convergence characteristics of the contact algorithm.
Indexc ranges from 1 to the number of contact nodes.

Determination of Contact Area

To obtain an accurate approximation of the contact
area of the Space Shuttle nose-gear tire under static load-
ing conditions, an algorithm was developed which
employs information from the initial geometry of the tire
footprint and updates this geometry to accommodate
footprint deformations associated with contact. Figure 4
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illustrates major features of this contact area algorithm.
The 9-noded element is conveniently subdivided into
four quadrants with a node on the corners of each quad-
rant. Coordinates of the quadrant corners are defined as

(17a)

(17b)

where  and  are the initial coordinates of the node
and  and  are the tangential nodal displacement
components. Indexi ranges from 1 to the number of
nodes in the element. As figure 4 indicates, the area of a
typical quadrant is

(18)

where the superscriptsa, b, c, andd denote the four cor-
ners of the quadrant, starting from the lower left and
advancing counterclockwise around the quadrant. Nodal
areas associated with contact nodes within a 9-noded ele-
ment are

(19)

When there is only partial contact within an element,
i.e., only some nodes are in contact, then a variable
weighting function is used to modify the nodal contact
areas as follows:

(20)

where  is the modified contact area associated with a
node in contact, and  is defined as

(21)

where nodek is a node on the periphery of the quadrant or
quadrants defining the nodal areas. For the corner nodes
of the 9-noded finite element shown in figure 4,nct is 3;
for the midside nodesnct is 5; and for the interior node
nct is 8. The peripheral nodes associated with corner node
1 are (2, 8, 9); the peripheral nodes for midside node 2
are (1, 3, 4, 8, 9); and the peripheral nodes for the interior
node 9 are (1, 2, 3, 4, 5, 6, 7, 8). Finally, the nodal areas
from each element are assembled into a global contact
node array so that the nodal areas reflect the contribu-
tions from all shared elements.

Special Treatment for Tread Grooves

To facilitate adequate modeling of the 3-
circumferential groove tread pattern of the Space Shuttle
nose-gear tire, modifications were made to the vector of
initial normal gaps  and to the variable weighting
function used to define the contact area. For nodes in the
region of a tread groove, a positive number was added to

 to prevent that node from contacting the surface. For
this investigation the following modification was made:

(22)

where the superscript ranges over the node numbers
associated with tread groove locations. Nodal areas for
contact nodes adjacent to the center groove were com-
puted directly from equations (19) and the variable
weighting function (eq. (20)) was not used for those
nodes. Nodal areas for contact nodes adjacent to either of
the remaining tread grooves were computed with the
variable weighting function (eq. (20)) modified to reflect
fewer peripheral contact nodes. For example, suppose the
right edge of the finite element shown in figure 4 coin-
cides with the left edge of a tread groove such that nodes
(3, 4, 5) are in the groove and never contact the surface.
For this situationnct for midside nodes (2, 6) is 3, and
their peripheral nodes are (1, 8, 9) and (7, 8, 9), respec-
tively. For the interior node (9)nct is 5, and the periph-
eral nodes are (1, 2, 6, 7, 8).

Evaluation of Contact Forces From Load
Intensities

Solution of the governing discrete equations of
the entire structure generates the nodal displacements,
the stress-resultant parameters, and the values of the
Lagrange multipliers at the contact nodes. For each
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individual element in contact, the intensity of the
contact-load intensities at a node  are equal
to the values of the Lagrange multipliers  at
the same node. Reference 30 states the contact-load
intensities may be expressed as a function of the nodal
forces  as follows:

(23)

where  are the shape functions used in approximating
the Lagrange multipliers and the generalized displace-
ments, andΩ(e) is the domain of the contact element. The
indicated numerical integration in equation (23) was
implemented with a Newton-Cotes quadrature formula-
tion. The range of bothi andj in equation (23) is from 1
to the number of displacement nodes in the element. Ref-
erences 29, 31, and 32 use this method in the analysis of
frictionless contact problems. This method of extracting
contact forces from the load intensities is consistent with
the finite-element formulation of the problem.

A possible drawback of this method is the fact that
the shape functions  are computed only for the un-
deformed tire and may not reflect contact area variations
associated with tire deformations at the tire-pavement
interface. An alternative method of obtaining contact
forces from the load intensities that alleviates this draw-
back is expressed in the following equation:

(24)

wherec ranges from 1 to the number of contact nodes.
Reference 30 discusses other approaches for determining
the contact forces.

Evaluation of Energy Dissipated During Slip

For contact problems involving friction it is impor-
tant to account for any slip that occurs in the contact area.
In this investigation the slip at each contact node is
approximated for each iteration with the following
equations:

(25a)

(25b)

whereuslip andvslip represent the tangential slip in the
tire meridional and circumferential directions, respec-
tively. Index c ranges from 1 to the number of contact
nodes and the indexk ranges from 1 to the number of
iterations at each load step. For a given contact node, the
total slip associated with a load step is

(26a)

(26b)

The magnitude of these total slip values  and
should increase monotonically over the iterations that
involve sliding contact. Energy dissipated through slip
was computed at each iteration for each contact node as

(27a)

(27b)

where the energy dissipation expressions ( )
should always be negative since the friction forces

 oppose the slip. Energy expressions
(eqs. (26)) are summed over the number of iterations to
obtain an estimate of the total energy dissipated through
sliding at each contact node and load step as follows:

(28a)

(28b)

Computational Procedures for Solving Tire
Contact Problem

The computational procedure used in the present
study is summarized as follows:

Preprocessing and Initial Calculation Phases

Step 1. Model tire geometry, evaluate stiffness coeffi-
cients (ref. 31), and generate input data includ-
ing transformation matrices.

Step 2. Select estimates for the penalty parameters and
assume the contact status at the selected con-
tact nodes.
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Step 3. Generate linear element arrays.

Solution Phase

Step 4. Solve inflation-pressure case without contact
using Newton-Raphson iteration scheme.

Step 5. Generate initial normal gap between the
inflated tire configuration and flat surface at
designated contact nodes.

• Begin displacement incrementation loop.

• Begin combined contact and Newton-
Raphson iteration loop.

Step 6. Generate nonlinear element arrays, eliminate
the stress resultants and the Lagrange multipli-
ers from the elemental equations, and assemble
the left- and right-hand sides of the equations.

Step 7. Solve equation (8) for the incremental
displacements.

Step 8. Update the response vector for displacements,
stress resultants, and the Lagrange multipliers:

(29)

Step 9. Check the contact status and modify the con-
tact conditions at each node as needed:

if  and , then the constraint is
active

if  or , then the contact constraint
is inactive

if  then the con-
tact condition is stick

if  then the con-
tact condition is slip

When the previous normal contact constraint is
inactive, proceed as follows:

a. If the current normal contact constraint is
also inactive, then continue.

b. If the current normal contact constraint
is active, add the active contact contri-
bution to the list of nodes with stick con-
tact, increment boundary conditions, and
continue.

When the previous contact constraint condition
is stick or slip, proceed as follows:

a. If the current contact constraint is
stick, increment boundary conditions and
continue.

b. If the current contact condition is
slip, define dynamic friction forces and
continue.

c. If the current normal contact constraint is
inactive, remove the node from the list of
active constraints, zero out contact forces,
and continue.

If any current contact constraints are different
from the previous constraints or if there are any
active slip constraints, return to step 6.

Step 10. Check the convergence of the Newton-
Raphson iterations:

(30)

wheren is the total number of degrees of free-
dom in the model and the tolerance is pre-
scribed. If convergence is achieved, then
compute the contact forces at each contact
node with equation (24) or with the following:

(31)

and continue. Otherwise return to step 6.

Step 11. If the prescribed displacement is greater than
the specified maximum displacement, then
stop. Otherwise, add additional displacement
and return to step 6.

The mixed-formulation finite elements used in this
study have nine displacement nodes and four stress-
resultant nodes and are designated as M9-4 elements in
table 1.

Comments on Mixed Models, Perturbed
Lagrangian Formulation, and Computational
Procedure

The following comments regarding the mixed mod-
els, the perturbed Lagrangian formulation, and the com-
putational procedure used herein are in order:

1. Nonlinear terms in the finite-element equations of the
mixed model (eq. (7)) have a simpler form than those
of the corresponding displacement model (eq. (9)).

2. Equation (7) includes both the Lagrange multiplier
approach and the penalty method as special cases, as
follows:
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a. As the penalty parametersεn andεt approach infin-
ity, equation (7) reduces to those of the Lagrange
multiplier approach.

b. When Lagrangian multiplier terms are eliminated
in equation (7), the resulting equations are identical
to the penalty method.

3. The perturbed Lagrangian formulation alleviates two
of the drawbacks associated with the Lagrangian mul-
tiplier approach and the penalty method, namely,

a. The regularization term in the functional results
in replacing one of the zero diagonal blocks in the
discrete equations of the Lagrangian multiplier
approach by the diagonal matrix  in
equation (7).

b. The contact condition is satisfied exactly by trans-
forming the constrained problem to an uncon-
strained problem through the introduction of
Lagrangian multipliers (the terms

in equation (6)) rather than approximately as in the
penalty method. However, the presence of the regu-
larization terms (the terms

in equation (6)) results in replacing the contact con-
dition by the perturbed condition:

(32)

4. An important consideration in the perturbed
Lagrangian formulation and in any penalty formula-
tion is the proper selection of the penalty parameters
εn andεt. With the foregoing mixed models the pen-
alty parameters can be chosen independently of the
element size without adversely affecting the perfor-
mance of the model. Accuracy of the contact solution
increases with increasing values of the penalty param-
eterεn. However, for very large values ofεn, the equa-
tions become ill-conditioned and thus round off errors
increase. For small values ofεt the tire footprint
becomes compliant, i.e., there is little or no slipping,
and the calculated friction forces are artificially low.
For very high values ofεt the contact algorithm with
friction may become ill-conditioned.

5. The elemental arrays , , ,
, and  are evaluated numerically

using a Gauss-Legendre formula. The arrays ,
, and  are evaluated using a Newton-Cotes

formula. In both cases the number of quadrature
points used is the same as the number of displacement
nodes in the element. This results in under-integrating
the arrays  and  and avoids the oscillatory
behavior of the contact-load intensity that has been
observed when the arrays are fully integrated. Note
that the use of Newton-Cotes formula allows the
contact-load intensities to be evaluated at the displace-
ment nodes. Appendix E gives details on the shape
functions for the Gauss-Legendre formula and the
Newton-Cotes formula.

Numerical Results

Description of Finite-Element Models

To develop the finite-element models used in the
analysis of the Space Shuttle nose-gear tire, the cubic
spline approximation of the outer meridional surface of
the tire half cross section was discretized into 75 poten-
tial node points as indicated in figure 5. From this popu-
lation of possible nodes, a smaller number of nodes was
chosen to approximate the tire cross section. To model
the tire inflation response, a single strip of 30 finite ele-
ments was used to approximate the complete tire cross
section. This model employed 61 nodes to characterize
the tire meridian, and 480 stress-resultant parameters and
293 nonzero generalized displacement parameters were
used to synthesize the tire inflation response.

Finite-element models employed to analyze the con-
tact behavior and friction characteristics of the Space
Shuttle nose-gear tire used 41 node points in one half of a
meridional cross section (81 nodes for the entire cross
section), and these nodes are denoted as the circular sym-
bols in figure 5. Nodes associated with the circumferen-
tial tread grooves are also highlighted in figure 5. In the
meridional direction, the tread area of the tire was mod-
eled with the highest density of nodes and the sidewall
and bead areas were modeled with progressively fewer
nodes. This meridional node pattern was used for each of
the two-dimensional finite-element tire models employed
in this investigation. The circumference of the tire was
divided into 240 possible node points, and a smaller
number of nodes was chosen from that population to con-
struct the tire finite-element models. To refine the mesh
in specific areas such as the contact zone, a higher den-
sity of nodes was chosen from the population in the spe-
cific region of interest.

Figure 6 shows a map of elements and node loca-
tions for one of the models used to analyze the contact
problem. Figure 6 shows an array of elements with
40 elements in the meridional direction and 18 elements
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in the circumferential direction. Numbers in the left and
right margins of figure 6 denote the beginning and end-
ing element numbers in specific rows. Black dots super-
imposed over the square grid of elements denote the
individual nodes of the finite-element model. Several
individual elements are shaded and shown in an
expanded scale to illustrate the node numbering sequence
that is used to minimize the bandwidth for the finite-
element models. The complicating factor here is that the
elements in the circumferential direction are joined along
the top and bottom edge. The numbering scheme that
is illustrated in the example shown in figure 6 provides
a minimum bandwidth for this tire model. For this spe-
cific example the bandwidth is 1635. The six rows of ele-
ments in the middle of the array, containing elements 1
through 240, comprise the possible contact region for
this model. Figure 6 also shows the location of the cir-
cumferential tread grooves of the Space Shuttle nose-
gear tire.

Three different models were used in the analysis of
the Space Shuttle nose-gear tire in contact with a flat
plate. These models, denoted as model 1, model 2, and
model 3, are depicted in figure 7. Each model employed
480 elements in the region outside the contact zone

. Model 1 included 240 elements in
the contact region of the tire  for a
total of 720 elements. (See fig. 6.) For model 1 there
were 14 076 nonzero generalized displacement parame-
ters, 23 040 stress-resultant parameters, and 3159
contact-load intensity parameters. Model 2 used a refined
mesh within the contact region with 480 contact elements
and a total of 960 elements overall. For model 2 there
were 18 776 nonzero generalized displacement parame-
ters, 30 720 stress-resultant parameters, and 6075
contact-load intensity parameters. Model 3 employed a
more refined mesh in the contact zone with 960 con-
tact elements and a total of 1440 elements. Model 3
employed 28 152 generalized displacement parameters,
46 080 stress-resultant parameters, and 11 907 contact
load-intensity parameters. A single iteration for model 1
required about 12 min on a Cray 2 computer, and a single
iteration for model 3 required about 12 min on a Cray
Y-MP computer.

Convergence Characteristics and Performance of
Contact-Friction Algorithm

Relaxation parameter and penalty parameter
effects.Table 2 shows the effect of variations in the
relaxation parameterεrelax on the convergence character-
istics of the contact-friction algorithm. To study this
effect four values ofεrelax were evaluated over seven
load steps. For a relaxation parameter value of 1.0 no
convergence was obtained within 40 iterations beyond

the second load step. It should be noted that the first load
step, which computed the inflation solution, involved no
contact and the second load step involved contact with no
sliding. Load steps 3–7 involved some tire sliding for the
conditions summarized in table 2. A relaxation parameter
value of 0.75 required a total of 104 iterations to obtain
converged solutions at the seven load steps; for a value of
εrelax of 0.5, only 36 iterations were required to cover the
same load range; and a relaxation parameter value of
0.25 required a total of 149 iterations. It is obvious from
these results that the choice of the relaxation parameter
can have a profound effect on the convergence character-
istics of the contact-friction algorithm.

Data shown in table 3 illustrate the oscillating fric-
tional load intensities that were observed when the relax-
ation parameter was set to 0.75. In table 3 both the lateral
friction load intensity and the drag friction load intensity
are shown to change sign 13 times during the course
of the 28 iterations required to obtain a converged solu-
tion at the third load step. No oscillatory behavior was
observed for the friction-force load intensities when the
relaxation parameter was set to 0.5 or 0.25.

Table 4 summarizes the effect of tangential penalty
parameter variations on convergence characteristics of
the contact-friction algorithm. To evaluate this effect
four values ofεt were studied over seven load steps. For
a tangential penalty parameter value of 1.0 a total of
31 iterations was required to obtain converged solutions
over the range of load steps tested. At a tangential pen-
alty parameter value of 1012 the number of iterations
required to obtain converged solutions over the same
load range increased to 45. Thus, approximately a
50 percent increase in iterations was required for con-
verged solutions whenεt was increased by 12 orders of
magnitude.

The physical significance of the tangential penalty
parameter is that it represents the distributed tangential
stiffness of the tire-contact interface and therefore serves
a double role of penalty parameter and tire stiffness
parameter in the contact-friction algorithm. Whenεt is
set to a value of 1.0, the footprint of the contact-friction
algorithm is compliant; little or no slip occurs in the tire
contact zone and the predicted friction-force load intensi-
ties are very small. Whenεt is set to 1012 the footprint of
the contact-friction algorithm is extremely stiff, the tire
must undergo slip to satisfy the Coulomb friction law
constraint, and the calculated friction-force load intensi-
ties may be too high. To illustrate this point more clearly,
figure 8 shows the normalized tire slip dissipation ener-
gies in the lateral and drag directions for two values ofεt.
Figure 8 indicates that the amount of energy dissipated
by the tire due to slipping in the footprint is strongly
influenced by the choice ofεt. Data presented in figure 8

θ 0.2π θ, 0.2π><( )
0.2π– θ 0.2π≤ ≤( )
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also indicate that the contact-friction algorithm predicts
much more energy dissipated from lateral slipping by the
tire than from slipping in the drag direction for static
loading cases studied in this investigation.

Figure 9 presents the influence of normal penalty
parameter magnitude on the accuracy of total strain
energy and total contact force. Total strain energy is the
integral of total strain energy density over the full extent
of the tire carcass, while total contact force is the integral
of normal contact-load intensity over the entire contact
zone. Strain-energy ratio, denoted by the solid line, and
contact-force ratio, denoted by the dashed line, are plot-
ted as a function of the base 10 logarithm of the penalty
parameter in figure 9. Results in figure 9 indicate that
total calculated strain energy and total contact force are
insensitive to variations in the normal penalty parameter
over the range of 106 to 1015. It should be noted that for
these tire-contact problems, total contact force is much
more sensitive to a poor choice in the penalty parameter
than total strain energy, as denoted by the percent errors
on the two ordinate axes.

Friction coefficient and load step size effects.
Table 5 summarizes the effect of static and dynamic fric-
tion coefficient variations on convergence characteristics
of the contact-friction algorithm. Three different static
friction coefficients were evaluated to study these
effects. µstatic= 0.3 represents a wet concrete runway
condition;µstatic= 0.6 represents a dry concrete runway
condition; andµstatic= 1.0 represents a maximum fric-
tion coefficient associated with aircraft tires in general.
The dynamic friction coefficient for each friction state
was taken to be 85 percent of the static value. These fric-
tion coefficient values are consistent with a substantial
aircraft tire friction database that has been acquired over
a number of years. Reference 33 gives further details on
experimental friction measurements for aircraft tires and
empirical relationships for predicting aircraft tire friction
responses. Data in table 5 indicate that about 30 percent
more iterations were required to obtain converged solu-
tions over the range of load steps tested for the low
friction surface and the high friction surface than for
the friction coefficients representative of the dry run-
way condition. These results indicate that the contact-
friction algorithm is robust enough to handle the range of
friction coefficients normally experienced in aircraft tire
applications.

Table 6 summarizes the effects of varying load step
size on the convergence characteristics of the contact-
friction algorithm. This study evaluates performance of
the algorithm over a normal tire deflection range from 0
to 0.6 in. In the first case the tire deflection range was
covered in 10 load steps; in the second case this deflec-

tion range was covered in 5 load steps; and in the third
case the deflection range was covered in 4 load steps.
Case 1 required 52 iterations and computed a tire load of
3998 lb for a tire deflection of 0.6 in. Case 2 required
28 iterations and case 3 required 26 iterations to obtain a
converged solution at a tire deflection of 0.6 in. The cal-
culated normal tire load for case 2 was 0.6 percent less
than the predicted load of case 1 and the calculated nor-
mal load for case 3 was 0.9 percent less than that for
case 1. It appears that the contact-friction algorithm can
operate over a range of step sizes without serious degra-
dation in performance.

Conclusions

A computational procedure is presented for the solu-
tion of frictional contact problems for aircraft tires.
The Space Shuttle nose-gear tire was modeled using a
two-dimensional laminated anisotropic shell theory
which includes the effects of variation in material and
geometric parameters, transverse-shear deformation, and
geometric nonlinearities. Contact conditions were incor-
porated into the formula by using a perturbed Lagrangian
approach with the fundamental unknowns consisting
of stress resultants, generalized displacements, and
Lagrange multipliers associated with contact and friction
conditions. The contact-friction algorithm is based on a
modified Coulomb friction law. A modified two-field,
mixed-variational principle was used to obtain elemental
arrays. This modification consists of augmenting the
functional of that principle by two terms: the Lagrange
multiplier vector associated with normal and tangential
node contact load intensities and a regularization term
that is quadratic in the Lagrange multiplier vector.

Shape functions used in approximating generalized
displacements and Lagrange multipliers were selected to
be the same and differ from those used to approximate
stress resultants. Stress resultants and Lagrange multipli-
ers were allowed to be discontinuous at the interelement
boundaries. Nonlinearities due to large displacements,
moderate rotations, and contact conditions were com-
bined into the same iteration loop and were handled by
using the Newton-Raphson iterative scheme.

Numerical results are presented for the Space Shuttle
nose-gear tire subjected to inflation pressure loads and
combined inflation pressure and contact loads against a
rigid flat plate.

Results from this investigation lead to the following
observations and conclusions: (1) the choice of the relax-
ation parameter is critical to the performance of the
contact-friction algorithm. If the parameter is too large,
oscillating friction load intensities occur; if the param-
eter is too small, many iterations are required for
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convergence. (2) The tangential penalty parameter is a
measure of tangential stiffness of the tire-contact inter-
face and has a strong influence on energy dissipated by
the tire due to slip. Normal contact-load intensity distri-
bution and strain energy are insensitive to variations in
the normal penalty parameter. (3) The contact-friction

algorithm is robust enough to handle the range of friction
coefficients associated with aircraft tire applications.

NASA Langley Research Center
Hampton, VA 23681-0001
January 18, 1996
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Appendix A

Fundamental Equations of Shell Theory Used in Present Study

Appendix A summarizes the fundamental equations of the Sanders-Budiansky type shell of revolution used in this
study. Effects of laminated, anisotropic material response and transverse-shear deformation are included in these
relationships.

Strain-Displacement Relationships

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

whereεs andεθ are extensional strains in the meridional and circumferential directions, 2εsθ is the in-plane shear strain,
κs andκθ are bending strains in the meridional and circumferential directions, 2κsθ is the twisting strain, 2εs3 and 2εθ3

are transverse-shear strains, , , andφ is the rotation around the normal to the shell, which is given by

(A9)

Nonlinear terms that account for moderate rotations are underlined with dashes in equations (A1) to (A3).

Constitutive Relations

The shell is assumed to be made of a laminated, anisotropic, linearly elastic material. Every point of the shell is
assumed to possess a single plane of elastic symmetry parallel to the middle surface. The relationships between the
stress resultants and the strain measures of the shell are given by
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(A10)

wherecij , fij , anddij  are shell stiffness coefficients. Nonorthotropic (anisotropic) terms are circled and
dots indicate zero terms.
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Appendix B

Formulas for Elemental Arrays , , , , , , , and

Appendix B gives explicit forms of the elemental arrays , , , , and . The arrays are
partitioned into blocks corresponding to the contributions from individual nodes or stress-resultant approximation func-
tions. Expressions for the typical blocks are given in table B1. The order of the strains isεs, εθ, 2εsθ, κs, κθ, 2κsθ, 2εs3,
and 2εθ3. The order of the nodal displacement parameters isu, v, w,φs, andφθ.

In table B1,  and  are shape functions associated with stress-resultant components;  and  are shape
functions for generalized displacements;s is the number of stress nodes in the element;m is the number of displacement

nodes in the element; andΩ(e) is the element domain. The range of the indicesk andl is 1 tos; the range of the indicesi

andj is 1 tom. Dots in the matrices refer to zero terms; ; and . Quantities  and  are defined in terms

of

(B1)

(B2)

F[ ] S[ ] G X( )[ ] M H X,( )[ ] P[ ] Q[ ] R[ ] g0{ }

F[ ] S[ ] G X( )[ ] M H X,( )[ ] P[ ]

N
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N
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N
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∂
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Table B1. Explicit Form of Typical Partitions of Arrays , , , , and

Array

Number of
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(or blocks) Typical partition
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Table B1. Concluded

Array

Number of
partitions

(or blocks) Typical partition
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Appendix B also gives explicit forms of elemental arrays , , and . Table B2 gives expressions of typi-
cal partitions. In table B2,  and  are shape functions for Lagrange multipliers and generalized displacements andc
is the number of nodal points in contact within the element. The range of the indicesi andj is from 1 toc, and the range
of the indexi′ is from 1 tom;  is the unit ramp (or singularity) function defined as follows:

(B3)

where  and  or 1. Vector  contains components , , and  for each contact node. Com-
ponents  and  are defined in figure 2(b).

Table B2. Explicit Form of Typical Partitions of Arrays , , and
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Number of partitions

(or blocks) Formula for typical partition
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Appendix C

Derivation of Newton-Raphson Tangential Operator Equations

Taylor’s Series Preliminary Discussion

The governing differential equations for the tire contact problem are

(C1)

In equation (C1)fl is the element flexibility matrix, dimensioneds8 × s8 and partitioned intos × s submatrices;sl is the
element linear strain-displacement matrix, dimensioneds8 × m5 and partitioned intos × m submatrices;mnl is the ele-
ment stress-displacement displacement matrix, dimensioneds3m3 × m3 and partitioned intosm× m submatrices; andqc
and rc are matrices associated with contact, dimensionedm × c3 andc × c3 and partitioned intom × c andc × c sub-
matrices, respectively. Subvectorsh, x, andλ representing stress, displacement, and contact-load intensity are dimen-
sioneds, m, andc3, respectively. The normalized external load vectorP is dimensionedm5 and the vector of initial gaps
g0 is dimensionedc3. The penalty parameter is denoted asε and the loading parameter is denoted asp. Superscriptt
denotes transpose and superscript (e) indicates that the equations are developed at the element level. Equation (C1) can
be expressed as three functions by carrying out the indicated multiplication:

(C2)

(C3)

(C4)

Consider a pointx0 “reasonably” close to a root of a functionf(x). Taylor’s series expansion aboutx0 is

(C5)

If f(x) is set to zero, thenx is a root of the right-hand side of the Taylor series expansion about x0 (taking linear terms
only):

(C6)

(C7)

(C8)

or

(C9)
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x represents an improved estimate of the root to replacex0

(C10)

Taylor’s series expansion of equation (C1) about h0, x0, andλ0, considering the linear terms only, leads to the following:

(C11)

(C12)

(C13)

Case I—No Contact

Consider first the case for no contact where equation (C1) is reduced to

(C14)

(C15)

(C16)

and rearranging the nonlinear terms

(C17)

Applying the Taylor series expansion yields the following equations:

(C18)

(C19)
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(C20)

and

(C21)
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Equations (C18) and (C19) become

(C22)

Equation (C22) defines the tangent operator for the Newton-Raphson iterative solution procedure for problems that do
not involve contact. Looking at the first part of equation (C22) where

(C23)

then multiplying by the inverse of the flexibility matrix

(C24)

and then substituting into the second part of equation (C22) yields

(C25)

Equation (C25) is the governing differential equation for problems that do not involve contact with the stresses elimi-
nated. Equation (C25) can be rewritten by defining the following terms that are employed in the tire modeling code used
in this investigation:

(C26)

(C27)

(C28)

(C29)

and equation (C25) now becomes

(C30)

Case II—Contact

Next consider the case of contact by reintroducing the contact terms into equation (C17)

(C31)

Applying the Taylor series expansion yields

(C18)
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(C32)

(C33)

Let

(C34)

Equations (C18), (C32), and (C33) become

(C35)

The contact equation (the last part of eq. (C35)) can be written as

(C36)

and solving for∆λ yields

(C37)

Substituting equation (C37) into the second part of equation (C35) redefines the governing differential equation to
account for contact terms

(C38)

where the underlined terms are those associated with contact. Equation (C38) is identical to equation (8) in the main
body of the paper. The following terms are associated with the contact solution in the tire modeling code used in this
investigation:
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(C41)
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sl
t
h0 mnlx0h0 qcλ0 pP h h0–( ) sl

t
mnlx0+( ) x x0–( )mnlh0 λ λ0–( )qc+ + +–+ + 0=

qc
t
x0

r c

ε
----λ0 g0 x x0–( )qc

t λ λ0–( )
r c

ε
----+ +–+ 0=

λ λ0–( ) ∆λ=

f l– sl mnlx0+( )

sl
t

mnlx0+( ) qc

qc
t r c

ε
----

∆h

∆x

∆λ 
 
 
 
 

f lh0 sl x0
1
2
---mnlx0x0––

sl
t
h0– mnlx0h0 qcλ0– pP+–

qc
t
x0–

r c

ε
----λ0 g0+–

 
 
 
 
 
 
 
 
 

rh

rx

rλ 
 
 
 
 

= =

r c

ε
---- 

 ∆λ qc
t ∆x– qc

t
x0

r c

ε
----λ0 g0+––=

∆λ
r c

ε
---- 

 
1–
qc

t ∆x–
r c

ε
---- 

 
1–
qc

t
x0

r c

ε
---- 

 
1–
g0 λ0–+–=

sl
t

mnlx0+( ) f l
1–

sl mnlx0+( )∆x mnlh0∆x qc

rc

ε
---- 

 
1–
qc

t ∆x–+ sl
t
h0– mnlx0h0 pP sl

t
mnlx0+( ) f l

1–
rh qc

r c

ε
---- 

 
1–

g0 qc
t
x0–( )––+–=

rx sl
t

mnlx0+( ) f l
1–
rh qc

rc

ε
---- 

 
1–

g0 qc
t
x0–( )––=

dlbar[ ]
r c

ε
---- 

 
1–
qc

t
=

rlbar( )
r c

ε
---- 

 
1–

g0 qc
t
x0–( ) λ0–=

rlb( )
r c

ε
---- 

 
1–

g0 qc
t
x0–( )=

k12s[ ]t
k12bar[ ] k22[ ] qc dlbar[ ]–+( )∆x rx( ) k12s[ ]t

rhbar( ) qc rlb( )––=



26

where the underlined terms are associated with contact. The stresses are recovered from the displacement solution
through the following equation:

(C43)

and the contact-load intensities are recovered from the displacement solution with

(C44)

h( ) rhbar( ) k12bar[ ] x( )–=

λ( ) rlbar( ) dlbar[ ] x( )–=
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Appendix D

Transformation of Elemental Arrays From Shell Coordinates to Global Cartesian Coordinates

Transformation of the displacement components from the shell coordinates  to the global Cartesian coordi-
nates  is expressed by the following equation:

(D1)

where  is a block-diagonal transformation whose submatrix at each node is given by

(D2)

where  and  are tangential unit vectors in thes- andθ-directions, respectively,  is the null vector, and
and  are generalized displacements in shell coordinates and global Cartesian coordinates, respectively. Note that
rotation componentsφs andφθ are not transformed since the outer surface of the tire was chosen as the reference surface;
therefore,φs andφθ do not appear in the contact conditions.

Elemental matrices  and  and the external load vector  are transformed from the shell coordinates to

the global Cartesian coordinates as follows:

(D3)

(D4)

(D5)

Nonlinear vectors  and  are evaluated with displacement vector  expressed in terms of
 at the end of each iteration cycle.

s θ x3, ,( )
x y z, ,( )

X{ } e( )
T[ ] X{ }

e( )
=

T[ ]

T[ ]
5 5×( )

n( )

es eθ es eθ× 0 0

1 0

0←

0 1

=

es eθ 0 X{ } e( )

X{ } e( )

S[ ] ∂M
∂X
-------- P{ }

S[ ] S[ ] T[ ]→

∂M
∂X
-------- T[ ]t ∂M

∂X
-------- T[ ]→

P{ } T[ ]t
P{ }→

G X( ){ } M H X,( ){ } X{ }
X{ }
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Appendix E

Details of Shape Functions for M9-4 Finite-Element Model

Appendix E presents the expressions for the shape functions used in the M9-4 finite-element model in terms of the
local quadrilateral (or natural) coordinatesξ andη. In figure E1 the open circular symbols denote the nine nodes for the
generalized displacements and Lagrange multipliers, and the filled symbols denote the interior nodes for the stress
resultants. Figure E1 also lists the coordinates of the four corner nodes.

Shape functions for the biquadratic approximations are given by the following system of equations:

(E1)

Figure E1.  Schematic of the M9-4 finite element.
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When the stress nodes are located at the center of each element quadrant, the corresponding bilinear shape functions
for the stress resultants are given by

(E2)

Elemental arrays , , , , and  are evaluated numerically using a Gauss-Legrendre
formula, and the arrays , , and  are evaluated using a Newton-Cotes formula. Reference 34 describes these
numerical quadrature formulas.

N
1′ 1

4
--- 1 2ξ 2η 4ξη+––( )=

N
2′ 1

4
--- 1 2ξ 2η 4ξη––+( )=

N
3′ 1

4
--- 1 2ξ 2η 4ξη+ + +( )=

N
4′ 1

4
--- 1 2ξ 2η 4ξη–+–( )=

F[ ] S[ ] G X( ){ } M H X,( ){ } P{ }
Q[ ] R[ ] g0{ }
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Table 1. Characteristics of Mixed Finite-Element Models Used in Numerical Studies

Designation
Number of

displacement nodes
Maximum number of
Lagrange multipliers

Number of
parameters per
stress resultant

Number of
quadrature points*

M9-4 3 × 3 3 × 3 2 × 2 3 × 3
*All elemental arrays are evaluated using Gauss-Legendre quadrature formulas except for , , and , which are evaluated us-
ing Newton-Cotes formulas.

Table 2. Effect of Relaxation Parameter on Convergence of Contact-Friction Algorithm

[εn = 1.0 E+12;εt = 1.5 E+06;µstatic= 0.6;µdynamic= 0.51]

Step εrelax Normal deflection, in. Normal load, lb Iterations

1 1.0 0 0 6
2 .025 86.63 4
3 .05 221.43 (a)
4 .1 515.07 (a)
5 .2 1256.76 (a)
6 .3 2112.22 (a)
7 .33 2315.18 (a)

Total 10a

1 0.75 0 0 6
2 .025 86.63 4
3 .05 221.43 28b

4 .1 515.07 15b

5 .2 1256.76 22b

6 .3 2112.22 25b

7 .33 2315.18 26b

Total 126b

1 0.5 0 0 6
2 .025 86.63 4
3 .05 221.43 4
4 .1 515.07 3
5 .2 1256.76 7
6 .3 2112.22 8
7 .33 2315.18 4

Total 36
1 0.25 0 0 6
2 .025 86.63 4
3 .05 221.43 32
4 .1 515.07 20
5 .2 1256.76 27
6 .3 2112.22 28
7 .33 2315.18 32

Total 149
aDid not converge in 40 iterations.
bOscillating friction forces.

Q[ ] R[ ] g0{ }
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Table 3. Iteration History for Contact Node 36 Illustrating Oscillating Friction-Load Intensities

[εrelax= 0.75;εn = 1.0 E+12;εt = 1.5 E+06;µstatic = 0.6;µdynamic = 0.51; Normal deflection = 0.05 in.]

Iteration Contact flag λw, psi λu, psi λv, psi

Lateral friction
slip energy,

in-lb

Drag friction
slip energy,

in-lb

1 1  0.0000 E+00  0.0000 E+00  0.0000 E+00  0.0000 E+00  0.0000 E+00
2 2 .1238 E+01 .6313 E+00 .2232 E−01 −.7834 E−04 −.9799 E−07
3 1 .1412 E+01 .6313 E+00 .2232 E−01 .0000 E+00 .0000 E+00
4 2 .1413 E+01 −.7206 E+00 −.2548 E−01 −.4470 E−04 −.5591 E−07
5 1 .1326 E+01 −.7206 E+00 −.2548 E−01 .0000 E+00 .0000 E+00
6 2 .1326 E+01 .6759 E+00 .2390 E−01 −.2096 E−04 −.2622 E−07
7 1 .1370 E+01 .6759 E+00 .2390 E−01 .0000 E+00 .0000 E+00
8 2 .1370 E+01 −.6982 E+00 −.2469 E−01 −.1082 E−04 −.1354 E−07
9 1 .1348 E+01 −.6982 E+00 −.2469 E−01 .0000 E+00 .0000 E+00

10 2 .1348 E+01 .6871 E+00 .2430 E−01 −.5327 E−05 −.6663 E−08
11 1 .1359 E+01 .6871 E+00 .2430 E−01 .0000 E+00 .0000 E+00
12 2 .1359 E+01 −.6927 E+00 −.2449 E−01 −.2685 E−05 −.3359 E−08
13 1 .1353 E+01 −.6927 E+00 −.2449 E−01 .0000 E+00 .0000 E+00
14 2 .1353 E+01 .6899 E+00 .2439 E−01 −.1337 E−05 −.1672 E−08
15 1 .1356 E+01 .6899 E+00 .2439 E−01 .0000 E+00 .0000 E+00
16 2 .1356 E+01 −.6913 E+00 −.2444 E−01 −.6700 E−06 −.8380 E−09
17 1 .1354 E+01 −.6913 E+00 −.2444 E−01 .0000 E+00 .0000 E+00
18 2 .1354 E+01 .6902 E+00 .2441 E−01 −.3345 E−06 −.4183 E−09
19 1 .1355 E+01 .6902 E+00 .2441 E−01 .0000 E+00 .0000 E+00
20 2 .1355 E+01 −.6907 E+00 −.2442 E−01 −.1673 E−06 .0000 E+00
21 1 .1354 E+01 −.6907 E+00 −.2442 E−01 .0000 E+00 .0000 E+00
22 2 .1354 E+01 .6905 E+00 .2442 E−01 −.8365 E−07 .0000 E+00
23 1 .1355 E+01 .6905 E+00 .2442 E−01 .0000 E+00 .0000 E+00
24 2 .1355 E+01 −.6906 E+00 −.2442 E−01 −.4183 E−07 .0000 E+00
25 1 .1354 E+01 −.6906 E+00 −.2442 E−01 .0000 E+00 .0000 E+00
26 2 .1354 E+01 .6905 E+00 .2442 E−01 −.2091 E−07 .0000 E+00
27 1 .1354 E+01 .6905 E+00 .2442 E−01 .0000 E+00 .0000 E+00
28 1 .1354 E+01 −.4183 E+00 −.1479 E−01 .0000 E+00 .0000 E+00

Total −.1655 E−03 −.2066 E−06
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Table 4. Effect of Tangential Penalty Parameter on Convergence of Contact-Friction Algorithm

[εrelax= 0.5;εn = 1.0 E+12;µstatic = 0.6;µdynamic = 0.51]

Step εt Normal deflection, in. Normal load, lb Iterations

1 1.0 0 0 6
2 .025 86.63 4
3 .05 221.43 3
4 .1 515.07 3
5 .2 1256.76 7
6 .3 2112.22 5
7 .33 2315.18 3

Total 31
1 1.5 E+03 0 0 6
2 .025 86.63 4
3 .05 221.43 4
4 .1 515.07 3
5 .2 1256.76 7
6 .3 2112.22 5
7 .33 2315.18 5

Total 34
1 1.5 E+06 0 0 6
2 .025 86.63 4
3 .05 221.43 4
4 .1 515.07 3
5 .2 1256.76 7
6 .3 2112.22 8
7 .33 2315.18 4

Total 36
1 1.0 E+12 0 0 6
2 .025 86.63 6
3 .05 221.43 6
4 .1 515.07 5
5 .2 1256.76 7
6 .3 2112.22 7
7 .33 2315.18 8

Total 45
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Table 5. Effect of Static and Dynamic Friction Coefficients on Convergence of Contact-Friction Algorithm

[εrelax= 0.5;εn = 1.0 E+12;εt = 1.5 E+03]

Step Friction coefficient Normal deflection, in. Normal load, lb Iterations

1 µstatic = 0.3 0 0 6
2 µdynamic = 0.26 .025 86.63 7
3 .05 221.43 7
4 .1 515.07 5
5 .2 1256.76 8
6 .3 2112.22 8
7 .33 2315.18 4

Total 45
1 µstatic = 0.6 0 0 6
2 µdynamic = 0.51 .025 86.63 4
3 .05 221.43 4
4 .1 515.07 3
5 .2 1256.76 7
6 .3 2112.22 5
7 .33 2315.18 5

Total 34
1 µstatic = 1.0 0 0 6
2 µdynamic = 0.85 .025 86.63 6
3 .05 221.43 7
4 .1 515.07 5
5 .2 1256.76 8
6 .3 2112.22 8
7 .33 2315.18 4

Total 44
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Table 6. Effect of Load Step Size on Convergence of Contact-Friction Algorithm

[εrelax= 0.5;εt = 1.5 E+03;εn = 1.0 E+12;µstatic = 0.6;µdynamic = 0.51]

Step Normal deflection, in. Normal load, lb Iterations

1 0 0 6
2 .025 86.63 4
3 .05 221.43 4
4 .1 515.07 3
5 .2 1256.76 7
6 .3 2112.22 5
7 .33 2315.18 5
8 .4 2806.26 4
9 .5 3435.70 8
10 .6 3998.32 6

Total 52
1 0 0 6
2 .025 86.63 4
3 .2 1255.77 8
4 .4 2779.85 5
5 .6 3974.51 5

Total 28
1 0 0 6
2 .025 86.63 4
3 .3 2110.36 7
4 .6 3962.25 9

Total 26
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(a)  External loading, generalized displacements, and stress resultants.

Figure 1.  Two-dimensional model of tire and sign convention.
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(b)  Free body diagram of applied loads, torques, and contact forces.

Figure 1.  Concluded.
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(a)  Normal gaps.

(b)  Transverse gaps.

Figure 2.  Schematic representation of gap terms associated with tire contact problems.
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Figure 3.  Schematic diagram of contact-friction algorithm logic.
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Figure 4.  Major characteristics of contact surface area algorithm.
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Figure 5.  Meridional profile of Space Shuttle nose-gear tire models denoting node point locations.
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Figure 6.  Typical array of finite elements and nodes used to model the Space Shuttle nose-gear tire.
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Figure 7.  Finite-element models of Space Shuttle nose-gear tire used in present study.
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Figure 8.  Effect of tangential penalty parameter variation on slip energy dissipated by tire.εrelax= 0.5;
εn = 1.0 E+12;µstatic= 0.6;µdynamic= 0.51; normal deflection = 0.3 in.

Figure 9.  Effect of magnitude of normal penalty parameterεn on accuracy of total strain energy and contact
force.p0 = 300 psi.
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Computational Methods for Frictional Contact With Applications to the
Space Shuttle Orbiter Nose-Gear Tire
Development of Frictional Contact Algorithm

WU 505-63-50-19

John A. Tanner
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NASA TP-3574

A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle
nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of varia-
tions in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact condi-
tions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns
consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both con-
tact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified
two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the
functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node
contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities
and computational features are incorporated into an in-house computer code. Experimental measurements were taken to
define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads com-
bined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the
tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire
footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for
the various static vertical loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire sub-
jected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experi-
mental measurements and the numerical results are compared.
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